Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Daisuke Shimizu, Nobuhiro

Takeda, Takahiro Sasamori and Norihiro Tokitoh*

Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan

Correspondence e-mail:
tokitoh@boc.kuicr.kyoto-u.ac.jp

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.023$
$w R$ factor $=0.057$
Data-to-parameter ratio $=13.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis[2-(phenylsulfanyl)benzenethiolato]palladium(II)

In the title complex, $\left[\mathrm{Pd}\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~S}_{2}\right)_{2}\right]$, the central Pd atom has a slightly distorted cis-planar four-coordinate geometry defined by the two thiolate and the two sulfanyl S atoms from two 2(phenylsulfanyl)benzenethiolate ligands. The two phenyl groups are on the same side of the PdS_{4} plane and indicative of the typical arrangement of intermolecular π-stacking. Moreover, an intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ stacking interaction links molecules to one another.

Comment

The cleavage of an $\mathrm{S}-\mathrm{S}$ bond mediated by a transition metal agent is one of the common methods to synthesize a transition metal complex with thiolate ligands. In the course of our studies on the reactivity of acyclic polythioethers possessing a disulfide bond toward low-valent transition metals (Shimizu et al., 2006), we synthesized the title compound, (I), by the reaction of $\left(\mathrm{PhSC}_{6} \mathrm{H}_{4} \mathrm{~S}\right)_{2}$ with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, and determined its crystal structure.

(I)

The molecular structure of (I) is shown in Fig. 1. The central Pd atom has a slightly distorted cis-square planar coordination to the two thiolate S atoms and the two sulfanyl S atoms of the two 2-(phenylsulfanyl)benzenethiolate ligands. The sum of the bond angles around the Pd 1 atom is close to 360°. The $\mathrm{Pd} 1-$ S 1 and $\mathrm{Pd} 1-\mathrm{S} 3$ bond lengths are slightly shorter than those of $\mathrm{Pd} 1-\mathrm{S} 2$ and $\mathrm{Pd} 1-\mathrm{S} 4$ (Table 1). The $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{PdS}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ group containing the PdS_{4} plane is essentially planar, with the two phenyl groups on the same side of this plane and perpendicular to it. Moreover, the two phenyl rings are nearly parallel to each other, the centroid-to-centroid separation of 3.6241 (16) Å suggesting a face-to-face π-stacking interaction.

The $\mathrm{C} 4-\mathrm{H} 3 \cdots \operatorname{Cg}(\mathrm{C} 13)^{\mathrm{i}}$ angle $[\mathrm{Cg}(\mathrm{C} 13)$ is the centroid of the C13-C18 ring] of 152° and $\mathrm{H} \cdots C g$ separation of $2.77 \AA$ indicate $\mathrm{C}-\mathrm{H} \cdots \pi$ stacking between neighbouring benzene rings [symmetry code: (i) $1-x,-y,-z$].

Received 21 November 2005 Accepted 13 December 2005 Online 23 December 2005

Experimental

Tetrakis(triphenylphosphine)palladium(0) ($133 \mathrm{mg}, 0.115 \mathrm{mmol}$) was added to a benzene solution $(10 \mathrm{ml})$ of bis[2-(phenylsulfanyl)phenyl] disulfide ($50 \mathrm{mg}, 0.115 \mathrm{mmol}$) (Figuly et al., 1989) at 298 K. After stirring for 24 h at this temperature, the crude mixture was purified by recrystallization from a benzene/acetonitrile solution (1:1) to give single crystals of (I) ($47.5 \mathrm{mg}, 76 \%$) [m.p. $526.0-527.0 \mathrm{~K}$ (decomposition)].

Crystal data

$\left[\mathrm{Pd}\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~S}_{2}\right)_{2}\right]$
$M_{r}=541.02$
Triclinic, $P \overline{1}$
$a=6.2910(1) \AA$
$b=8.4579(2) \AA$
$c=20.4780(5) \AA$
$\alpha=98.7890(13)^{\circ}$
$\beta=92.7051(14)^{\circ}$
$\gamma=91.2243(15)^{\circ}$
$V=1075.16(4) \AA^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.671 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 3349
reflections
$\theta=2.4-25.5^{\circ}$
$\mu=1.26 \mathrm{~mm}^{-1}$
$T=153$ (2) K
Prism, purple
$0.15 \times 0.10 \times 0.01 \mathrm{~mm}$

Data collection

Rigaku Saturn diffractometer ω scans
Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.834, T_{\text {max }}=0.988$
8083 measured reflections
3985 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.057$
$S=1.07$
3985 reflections
302 parameters
H -atom parameters constrained

Figure 1
The molecular structure of (I), shown with 50% probability displacement ellipsoids. H atoms are represented by circles of arbitrary size.

Figure 2
The molecular packing of (I), viewed edge-on to the $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2} \mathrm{PdS}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ plane.

This work was partially supported by Grants-in-Aid for COE Research on Elements Science (No. 12CE2005), Creative Scientific Research (No. 17GS0270), Scientific Research on Priority Area (No. 14078213), Young Scientist (B) (No. 15750031), and the 21st Century COE Programme of Kyoto University Alliance for Chemistry, from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Figuly, G. D., Loop, C. K. \& Martin, J. C. (1989). J. Am. Chem. Soc. 111, 654 658.

Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Rigaku (2004). CRYSTALCLEAR. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shimizu, D., Takeda, N. \& Tokitoh, N. (2006). Chem. Commun. In the press.
Wakita, K. (2005). Yadokari-XG. URL: http://www.hat.hi-ho.ne.jp/k-wakita/ yadokari/index.html.

